Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Memristors for neuromorphic computing have gained prominence over the years for implementing synapses and neurons due to their nano-scale footprint and reduced complexity. Several demonstrations show two-dimensional (2D) materials as a promising platform for the realization of transparent, flexible, ultra-thin memristive synapses. However, unsupervised learning in a spiking neural network (SNN) facilitated by linearity and symmetry in synaptic weight update has not been explored thoroughly using the 2D materials platform. Here, we demonstrate that graphene/MoS2/SiOx/Ni synapses exhibit ideal linearity and symmetry when subjected to identical input pulses, which is essential for their role in online training of neural networks. The linearity in weight update holds for a range of pulse width, amplitude and number of applied pulses. Our work illustrates that the mechanism of switching in MoS2-based synapses is through conductive filaments governed by Poole-Frenkel emission. We demonstrate that the graphene/MoS2/SiOx/Ni synapses, when integrated with a MoS2-based leaky integrate-and-fire neuron, can control the spiking of the neuron efficiently. This work establishes 2D MoS2as a viable platform for all-memristive SNNs.more » « less
-
null (Ed.)Two-dimensional (2D) molybdenum disulfide (MoS 2 ) layers are suitable for visible-to-near infrared photodetection owing to their tunable optical bandgaps. Also, their superior mechanical deformability enabled by an extremely small thickness and van der Waals (vdW) assembly allows them to be structured into unconventional physical forms, unattainable with any other materials. Herein, we demonstrate a new type of 2D MoS 2 layer-based rollable photodetector that can be mechanically reconfigured while maintaining excellent geometry-invariant photo-responsiveness. Large-area (>a few cm 2 ) 2D MoS 2 layers grown by chemical vapor deposition (CVD) were integrated on transparent and flexible substrates composed of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCNs) by a direct solution casting method. These composite materials in three-dimensionally rollable forms exhibited a large set of intriguing photo-responsiveness, well preserving intrinsic opto-electrical characteristics of the integrated 2D MoS 2 layers; i.e. , light intensity-dependent photocurrents insensitive to illumination angles as well as highly tunable photocurrents varying with the rolling number of 2D MoS 2 layers, which were impossible to achieve with conventional photodetectors. This study provides a new design principle for converting 2D materials to three-dimensional (3D) objects of tailored functionalities and structures, significantly broadening their potential and versatility in futuristic devices.more » « less
-
null (Ed.)2D PtTe 2 layers, a relatively new class of 2D crystals, have unique band structure and remarkably high electrical conductivity promising for emergent opto-electronics. This intrinsic superiority can be further leveraged toward practical device applications by merging them with mature 3D semiconductors, which has remained largely unexplored. Herein, we explored 2D/3D heterojunction devices by directly growing large-area (>cm 2 ) 2D PtTe 2 layers on Si wafers using a low-temperature CVD method and unveiled their superior opto-electrical characteristics. The devices exhibited excellent Schottky transport characteristics essential for high-performance photovoltaics and photodetection, i.e. , well-balanced combination of high photodetectivity (>10 13 Jones), small photo-responsiveness time (∼1 μs), high current rectification ratio (>10 5 ), and water super-hydrophobicity driven photovoltaic improvement (>300%). These performances were identified to be superior to those of previously explored 2D/3D or 2D layer-based devices with much smaller junction areas, and their underlying principles were confirmed by DFT calculations.more » « less
-
null (Ed.)Two-dimensional (2D) transition metal dichalcogenide (TMD) layers have gained increasing attention for a variety of emerging electrical, thermal, and optical applications. Recently developed metallic 2D TMD layers have been projected to exhibit unique attributes unattainable in their semiconducting counterparts; e.g. , much higher electrical and thermal conductivities coupled with mechanical flexibility. In this work, we explored 2D platinum ditelluride (2D PtTe 2 ) layers – a relatively new class of metallic 2D TMDs – by studying their previously unexplored electro-thermal properties for unconventional window applications. We prepared wafer-scale 2D PtTe 2 layer-coated optically transparent and mechanically flexible willow glasses via a thermally-assisted tellurization of Pt films at a low temperature of 400 °C. The 2D PtTe 2 layer-coated windows exhibited a thickness-dependent optical transparency and electrical conductivity of >10 6 S m −1 – higher than most of the previously explored 2D TMDs. Upon the application of electrical bias, these windows displayed a significant increase in temperature driven by Joule heating as confirmed by the infrared (IR) imaging characterization. Such superior electro-thermal conversion efficiencies inherent to 2D PtTe 2 layers were utilized to demonstrate various applications, including thermochromic displays and electrically-driven defogging windows accompanying mechanical flexibility. Comparisons of these performances confirm the superiority of the wafer-scale 2D PtTe 2 layers over other nanomaterials explored for such applications.more » « less
An official website of the United States government
